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1.0 INTRODUCTION

This document reports the architecture study results for the real-time implementation of

remote minefield detection system (REMIDS) algorithms using images from the REMIDS II

sensor. The real-time REMIDS system consists of two intercommunicating processors. The

processes that they perform are referred to as data compression and classification.

Sections 2.0 and 3.0 and their related subsections discuss the data compression and

classification algorithms of the REMIDS II System.

Sections 2.1 and 3.1 discuss the data compression and classification algorithms. Sec-

tions 2.2 and 3.2 discuss the performance of the processors that were considered for perform-

ing the data compression and classification algorithms.

Sections 2.3, 2.4, 3.3 and 3.4 determine a quantitative score for each of the data compres-

sion and classification processors. These scores are determined through a two-part procedure

(explained ;- section 1.2) -,nd are iisd to evaluate the processors executing the data com-

pression and classification algorithms.

Section 4.0 discusses the proposed hardware configuration for the REMIDS II system and

lists the unresolved issues.

Throughout this report the following terms are used. Architecture refers to the organi-

zational structure of a processor. Processor refers to an implementation of an architecture.

More than one implementation of an architecture may exist. System refers to an assembly

of processors that form a whole-in this case, the REMIDS system. Operation refers to the

actions performed when an instruction is executed. Examples are the addition and multipli-

cation operations of scalar arithmetic; the convolution, thresholding and feature extraction

operations of image analysis; and the dilation and erosion operations of morphological image

processing. Algorithm refers to a set of operations and rules for getting a specific output from

a. specific input. Process rieferb to an aigoriihm that changes the getneral form of data in a de-

finable way. Consequently, data compression, clustering, and linearity and density screening
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are processes and algorithms since they have image, vector, scalar, and morphological data

types. Architecture overhead refers to the processing power required for operations that do

not contribute to the processing of algorithm data, such as I/O management, processor syn-

chronization, etc. Architecture overhead also includes processing power that is wasted when

part of the hardware is unused because the hardware is not perfectly fitted to the algorithm.

For instance, during synchronization of multiple parallel processors, some processors will

idle-contributing nothing to performance-whiie waiting for other processors to complete

their operations. Architecture head room refers to the ivailable safety margin of processing

power. Although some processing power may be unused, it is not included as part of the

architecture head room if it is not able to be used (for example, idle time during processor

synchronization).

The following sections provide background material on the sensor and the algorithms

for mine detection, describe the methodology used to evaluate the data compression and

classification processors, and summarize the results of the study.

1.1 Background

The remote minefield detection system (REMIDS) developed by the Waterways Experimen-

tation Station (WES) uses a sensor, which includes active and passive modalities, to form

images for remote sensing of anti-personnel and anti-armor mines. The sensor includes a

thermal infrared (IR) detector and two (parallel and cross) polarization sensitive near in-

frared (NIR) detectors with an active polarized IR laser illuminator. The sensor is intended

to be mounted in an autonomous or remotely piloted air vehicle that will traverse navigable

land areas to locate and identify the boundaries of minefields.

The algorithms use an adaptive multi-sensor fusion approach to finding the minefields

(see Figure 1, Minefield Detection Algorithm). The polarization information is formed into

two images: thk.e difference between the parallel and cross polarization returns, and the total

of the these two returns. These, plus the thermal image, make up the three image inputs to

the minefield detection algorithm.
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The algorithms can be divided into two major sections. The top half of Figure 1 (the part

above the classification block) shows an adaptive data compression algorithm that, with slight

variations, is executed on each of the three image types: polarized NIR detectors' difference,

polarized NIR detectors' total, and IR thermal detector. This algorithm determines those

pixels that are likely to be part of a mine. Pixels are chosen based on an analysis of edges in

the region of the pixel. The lower half of Figure 1 depicts an adaptive classification algorithm

that categorizes the pixels screened in the data compression algorithm into individual clusters

and then regroups them into objects. These objects can then be analyzed for shape, size, and

spatial distributions to determine if they are part of a minefield. The classification algorithm

is explained in detail in Section 3.1.

1.2 Evaluation Methodology

Alternative synthesis and evaluation has been constrained, primarily, by time and funding. In

order to provide the most thorough analysis practical in the time available, several individuals

were assigned to evaluate different architectures for the data compression and classification

processors. To provide consistent evaluation of the architectures and to limit the impact of

biases, a consistent procedure of evaluation is used. The procedure of choosing processors

has two major steps. These steps are applied to evaluate the data compression processors

in Sections 2.3 and 2.4, and the classification processors in Sections 3.3 and 3.4.

In the first step, a set of decision criteria and priorities are established. The decision

criteria are divided into a mandatory and a desirable set. The mandatory criteria are essential

for success of the real-time project. The desirable criteria are assigned a weight, on a scale

of one to ten, that reflects their importance for successful completion of the program. The

most important desirable criteria receive a weight of ten. Other desirable criteria are given

weights in proportion to the most important desirable criteria.

The second step is to assign a score to each processor for each desirable criteria, on a

scale of one to ten, that reflects how well each processor satisfies each of the desirable criteria:

each processor is also studied to determine if each mandatory criteria has heen satisfied. If

m . , Ii I l 4



a particular architecture does not satisfy a mandatory criteria, then it is eliminated from

further consideration. The processor that best satisfies the desirable criteria receives a score

of 10. Other processors axe given scores proportional to a score of 10. Whenever possible,

the scores are based on quantitative information. Each processor then receives a composite

score-computed by summing the products of the criteria weights and the processor scores

for each criteria-that is used to justify the choice of processor for the REMIDS system.

1.3 Summary of Results

Three alternatives were evaluated for real-time execution of the Data Compression algo-

rithms, the AISI AISI5000, the ITI Series 150 board set, and the Datacube Max-Video board

set. It was concluded that the Datacube board set provides the best balance of cost, per-

formance, and support for this algorithm. The alternatives either had significant risk of not

being able to execute the algorithms in real time or required development of special inter

faces to handle the line lengths from the REMIDS II sensor and the required high resolution

display. The Datacube board set provides the required interfaces, modules to execute each

of the sections of the algorithm in real time, and reasonable software and field support.

Five alternatives were considered for real-time execution of the Classification Processor

algorithms. These were the AMT DAP500, the N-Cube N-Cube7, the Parsytec Transputer

boards, the AISI AISI5000, and multiple 68020 boards from Force. It was concluded that the

Parsytec Transputer boards provide the best balance of cost, performance, and support for

these algorithms. It is anticipated that 13 Transputers will provide the required processing

power. The system is expandable with boards that contain two transputers each. The

support software is well established and the cost is well below any of the alternatives.

Section 2.0 e plains in greater detail why the Datacube board set was chosen for integrat-

ing and executing the Data Compression algorithm. Section 3.0 explains why the Parsytec

Transputer board set was chosen for integrating and executing the Classification algorithm.
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2.0 DATA COMPRESSION PROCESSOR

The data compression algorithms require extensive processing for each pixel acquired by the

sensor. Two approaches exist for implementing the algorithms in real time. Since the algo-

rithms were initially implemented for non-real-time execution, we assumed a frame-by-frame

approach. An alternative, which must be considered, is to implement the algorithms in a

line-by-line approach. The principal difference between these approaches is in the adaptive

thresholding aspects of the algorithm. The line-by-line approach provides a smoother tran-

sition when the characteristics of the data change, but it will also require more computation.

For this evaluation, it is assumed that the existing frame-by-frame approach will be fol-

lowed. However, one of the desirable decision criteria is the availability of enough flexibility

and computational power to implement a line-by-line approach.

An overview of the data compression algorithm and hardware performance analyses can

be found in Sections 2.1 and 2.2. The acceptance criteria and evaluation results correspond-

ing to the two steps of the evaluation process, explained in Section 1.2, are contained !n

Sections 2.3 and 2.4.

2.1 Data Compression Algorithm Analysis

Execution of the data compression algorithms can be performed by the generic processor

depicted in Figure 2, Generic Data Compression Processor. Three image channels-sum.

difference, and thermal-are shown passing through the processor in parallel. The hardware

resources may be shared across multiple channels and operate upon each channel sequentially.

The classes of operations required by the data compression algorithms can be categorized as

follows:

* Input Data Formatting
* Image Buffering
" Histogramming and Image Statistic Computation
• Convolution
" Thresholding
" Feature Extraction
" Image Display

n ! ! | i7
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These operations form a required minimum set of functions that any potential data com-

pression processor must support.

2.2 Data Compression Hardware Performance Analysis

There are two general classes of processing architectures that can provide enough compu-

tational power to execute the data compression algorithms in real time: massively parallel

and pipelined. These two parallel processing architectures were considered in developing an

implementation of the data compression algorithms.

In the fine-grained, massively parallel architecture, many simple processing elements

(PEs) execute a common program in unison. Each PE has local storage, as well as access to

the storage of PEs in a local neighborhood. Each PE executes the algorithm on a pixel or

group of pixels. This architecture is discussed in Section 2.2.1.

The PE of the pipelined architecture transfers data in a raster-scan format through a

series of processing stages. Each stage executes one or several instructions from the algorithm

on the data that it receives. The current stage then sends the results to the next stage for

execution of the next set of instructions while it processes the next set of input pixels. The

pipeline of stages acts as a production line. Each stage executes a portion of the algorithm

and passes the results to the next PE. This architecture is discussed in Section 2.2.2.

2.2.1 Massively Parallel, Mesh Connected Architectures

The first architecture that was considered is the massively parallel architecture. The Applied

Intelligent Systems AISI5000 parallel processor is the implementation studied. It is a single

instruction multiple data (SIMD) architecture consisting of an Nx I dimensional array of

computational elements; the array size can range from 128xl to 1024x1. The AISI5000

array is as wide as the image because there is one PE allocated for each column in the image.

Enough memory is coupled directly to each PE to hold the entire column of the image data,

as well as to provide a large amount of storage space for intermediate results. A single image

9



operation will load instructions into the PEs, read rows of data from the associated memory

to the PEs, perform the transformation, and then write the resulting transformed rows back

into memory. Rows are read and written sequentially until the entire image is processed.

The AIS15000 system consists of three major components:

e A general purpose 68000 host processor and peripherals,
9 Special purpose high speed input/output hardware for the parallel processor, and
* An SIMD array parallel processor and controller.

Figure 3, AISI5000 System, shows the relationship between the host, input/output (I/O),

and parallel processor components. The 68000 host includes memory and peripherals; it has

a conventional design and programming methodology. The I/O sections transfer data in and

out of the memory associated with the PEs and contain corner-turning logic. The corner-

turning logic serially buffers the data of a complete image line, then passes the entire row

into the processing array memories in parallel. The data destined for the parallel memory

within the PEs can come from a number of sources, including cameras and standard 68000

addressable random access memory (RAM). The data coming from parallel memory can go

to a number of destinations, including video monitors and the 68000 RAM. The parallel

processing portion of the AISI5000 consists of the PEs, their associated memory, and the

controller that directs their function.

The linear array can contain up to 1024 programmable, bit-serial PEs; each is tightly

coupled to its own local single-bit-wide memory and has connections to two neighboring PEs

as shown in Figure 4, Organization of the AISI5000 Processor Elements. Each PE has direct

access to 32kbits of RAM within its own column. The data in all adjacent memory columns

can be accessed by a PE through connections to its two neighboring PEs. The PEs can

perform three distinct types of functions: Boolean, neighborhood, and arithmetic. These

functions are performed on single bits read from the memory; the results of the functions are

written back to memory. A three-channel I/O system facilitates movement of data in and

out of the parallel memory. The I/O operates independently of, and asynchronously with,

the PEs.

10
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2.2.2 Pipelined, Recirculating Architectures

The second architecture that was analyzed is the pipelined architecture. With a modu-

lar family of programmable, pipelined processing units, a real-time image processor can be

customized for a specific algorithm. For the pipelined architecture, the Datacube and ITI

processors were considered. They can be customized to a set of algorithms by distribut-

ing the various operations required for image processing and analysis to separate Versabus

Module Europe (VME) boards that have been designed to perform the operations of image

algorithms. Each board supports a powerful, flexible set of operations of a particular class.

Partitioning of operations to distinct hardware boards typically occurs along the following

boundaries:

" Image Acquisition/Display
* Image Memory
* Convolution/Finite Impulse Response (FIR) Filtering
* Histogram/Feature Extraction
" General Digital Signal Processing (DSP)
* Neighborhood Processing

These modules may be arranged to support a number of parallel architectures, from multi-

pass recirculating architectures to fully pipelined architectures. The processing units are

designed to allow pixel data to flow synchronously through high-speed pipelines at video

rates-typically 10MHz (10 Million Hertz or 10 Million cycles per second). Multiple ded-

icated image data buses are supported throughout a multi-board configuration. For re-

circulating implementations, the routing of these buses and the interconnection of various

processing modules can be modified on-the-fly through cross-point switching units. A sepa-

rate 68000-based host processor provides overall control and updates control/configuration

registers on the image processing modules. A pipelined configuration is shown in Figure 5,

Typical Programmable Pipeline Module Image Processor Configuration.

2.3 Data Compression Processor Acceptance Criteria

The first step of the evaluation process, explained in Section 1.2. is applied here for the data

compression hardware. Based on the data compression algorithms currently implemented

13
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and considering real-time execution constraints, the following mandatory and desirable hard-

ware selection criteria were established:

MANDATORY

" 700 pixels per scan line
• High-resolution (700+ element) display support
" Algorithm functionality
" Established product
* Processing power above established minimum
* Size, weight, and power below established maximums

DESIRED

" Algorithm overhead (9)
" Expandability/Configurability (7)
" Architecture overhead (7)
" Significant number of units in field (5)
" Quality of field support (4)
" Slow scan digital input support (3)
* Display function support (3)
" Minimum cost (2)
* Minimal size, weight, and power (2)

The mandatory items are essential to the completion of the real-time REMIDS project. The

desirable items are given weights from one to ten-shown here in parentheses-that reflect

the ease or difficulty of integrating the individual hardware and algorithms into a real-time

system within the current development constraints.

The available algorithm overhead is the most important of the desirable criteria. This

criteria refers to the ability of the family of processor modules to accommodate the various

algorithm operations called for in the data compression algorithms. The sponsor prefers

these operations to be implemented as directly as possible with a minimum of software

development-reconstruction of operations through sets of primitive commands-and with

as few recirculations of the images as possible.

Expandability and architecture overhead are also desirable criteria. Easy expandability

may be critical if the data compression algorithms require more processing power than %e

have estimated. Small increments are more desirable for economic reasons, but reducing the

15



additional programming effort-required when expanding the processor size- should have

a higher priority. Architecture overhead refers to the processing power required for opera-

tions that do not contribute to the processing of algorithm data, such as I/O management,

processor synchronization, etc. Architecture overhead also includes processing power that

is wasted when part of the hardware is unused because the hardware is not perfectly fitted

to the algorithm. For instance, during synchronization of multiple parallel processors, some

processors will idle-contributing nothing to performance-while waiting for other proces-

sors to complete their operations. The programmer may also have difficulty utilizing the

hardware to full capacity if the development system is inadequate.

The sponsor prefers a slow-scan digital interface. The non-standard scanner video data

rate requires that pixels be clocked into the processor at sensor-driven rates. A hardware

module that will accommodate these requirements will eliminate the need for designing and

building custom interface hardware and software.

Image display functions are a key component of the data compression processor. For in-

stance, overlay features are also highly desirable and will simplify the task of superimposing

flagged pixels (mines) upon the original image. Thus, we prefer the board set to include dig-

ital image display hardware and software support features. In addition, the system requires

support for high-resolution displays because the image line lengths exceed standard video

formats.

The following section applies these criteria to the individual architectures considered.

2.4 Data Compression Processor Analysis Results

Table 1, Data Compression Processor Analysis, summarizes the AISI, Datacube, and ITI

processor qualities based on the criteria described in Section 2.3. Determining whether a

processor possesses adequate processing power is a difficult criteria to evaluate. Besides raw

peak processing rate (for example, the number of 3x3 convolutions per second), overhead

such as host I/O, module reprogramming, bus contentions, etc., must also be considered in
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establishing accurate estimates of net throughput. Optimization techniques that could be

applied in both hardware and software can provide significant performance gains, but they

are difficult to predict.

A throughput analysis for the AISI and the Datacube systems is summarized in Ta-

ble 2, Data Compression Throughput Analysis (Datacube Board Set), and Table 3, Data

Compression Throughput Analysis (AISI5000) .

We divided the existing data compression algorithms into a set of generic operations

(histogram, convolution, threshold, etc.) that could be mapped to the hardware architec-

tures being studied. The processing time for each operation was then estimated based on

manufacturer's benchmarks for identical or related operations. A preliminary estimate of

processor performance is possible when given the required input frame rate, knowing the

sequence of generic operations that must be performed per frame, and knowing their respec-

tive execution times on a given set of hardware. Adequate time margins must be available

to accommodate the overhead not considered in this simplified analysis.

The following sections discuss the evaluation of the Datacube, AISI5000, and ITI hard-

ware for their ability to perform the data compression algorithms at real-time rates.

2.4.1 Datacube MaxVideo Boards

The second step of the evaluation process, explained in Section 1.2, is applied here to

the Datacube MaxVideo boards. The Datacube Maxvideo board set is particularly well

matched to the operations specified in the current data compression algorithms. Its two-

stage pipelined processor-each stage consisting of multiple processing boards-should pro-

vide more than adequate timing margins for processing and overhead operations. Figure 6,

Two-Stage Pipeline-based Data Compression Processor, depicts a two-stage pipeline pro-

cessor for implementing the data compression algorithms. For those module functions that

do not support processing of variable regions of interest or of line lengths greater than 512

pixels (for example, histogram/feature extraction), two passes over the image frame will be
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Table 2. Data Compression Throughput Analysis (Datacube Board Set)

CONDITIONS:
Single Processor Shared Over Three Channels
700 Pixel by 176 Lines Per Frame
Three Frames Every .5 Second (6 Frames Per Second)
10MHz Pixel Processing Rate
Two-stage Pipeline
One Second Processing Latency
Algorithms Executed "Literally"

Algorithm Operation Passes Through Frames Processing Time (mSec)

STAGE I
Frame Copy 3 37
Histogram/Statistics 3 99
Point Filter/Threshold 2 24.6

(3x3 Convolution)
(Threshold)

Sobel Magnitude 6 74
(3x3 Convolution)
(Mag. Detect)
(Threshold)

234.6

STAGE II
Donut Filter 3 37

(7x7 Convolution)
Histogram/Statistics 3 78
Threshold 11 136

(6 Compares)
(5 Boolean)

Feature Extract 4 50

301

Note: Processing overhead times
must be factored in and will
decrease resulting timing margins.

TIMING MARGINS:
Stage 1 500 - 235 = 265 mSec (53%)
Stage II 500 - 301 = 199 inSec (40%)
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Table 3. Data Compression Throughput Analysis (AISI 5000)

CONDITIONS:
Single Processor Shared Over Three Channels
700 Pixel by 176 Lines Per Frame
Three Frames Every .5 Second (6 Frames Per Second)
Algorithms Executed "Literally"

Algorithm Operation Processing Time (mSec)

Load Frames 18
Histogram/Statistics 2400
Point Filter/Threshold 11

(3x3 Convolution)
(Threshold)

Sobel Magnitude 33.6
(3x3 Convolution)
(Mag.Detect)
(Threshold)

Donut Filter 90
(7x7 Convolution)

Threshold 8
(6 Compares)
(5 Boolean)

Feature Extraction 61

2621.6

Note: Processing overhead times
must be factored in and will
decrease resulting timing margins.

TIMING MARGIN:
No Margin
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required. The results are then combined. However, it may prove more efficient to perform the

histogram function using Datacube's Euclid DSP module, rather than wait for the Feature

Max module to cycle through a full 512 x512 frame. Because this board requires a 512 x512

image and the REMIDS image is one-third this size, 336 lines of the image will not contain

data. The Feature Max board must process 512 lines per pass; this is a restriction not well

suited to REMIDS images (176 lines per frame).

Considering that the data compression algorithms are essentially fully developed and will

require only minor parameter adjustments in the future, the Datacube implementation will

require the least amount of effort in implementing the algorithms in hardware. Thus, the

Datacube board set provides a very attractive performance/cost quotient. Some degree of

flexibility is available in the sequencing of operations and the interconnecting of processing

elements, particularly if we use the cross-point switch module. However, overhead times

in the algorithm operations and PE synchronization can be expected to rapidly increase as

conditional branching increases.

2.4.2 AISI AISI5000

The second step of the analysis process, explained in Section 1.2, is applied here to the

AISIh000. A single 700 PE AISI processor--one PE per image column-is not suited to

direct implementation of the WES data compression algorithms as currently specified. This

incompatablity results primarily from the very slow rate at which multiple image histograms

can be computed (0.4 seconds per 700x176 frame). The AISI performance on the other

required algorithm operations is more than adequate. The AISI processor works well with

algorithm implementations that employ image morphology rather than histogramming to

perform adaptive background normalization. The data compression algorithm could be re-

worked to take advantage of the operations suited to the AISI5000 architecture and remain

functionally equivalent to the existing algorithm. If the data compression algorithms were

reworked, the AISI5000 could meet the performance requirements for a real-time data com-

pression architecture.
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If evaluating different data compression algorithms-optimized for extended capabil-

ity, robustness, etc.-was desirable, the relatively constrained architecture using dedicated

processing boards becomes rmuch less desirable and th4 flexibility of the AISI linear array

architecture would be more attractive. Given the resources to remap existing algorithms to

the AISI system (employing some fundamentally different thinking but achieving the same

results), one can achieve a hardware architecture with much more flexibility in terms of pixel

precision, conditional execution, and frame sizes. This flexibility is particularly evident with

programmable algorithm operators, such as nonlinear filtering, shape analysis, etc. However,

the data compression algorithm analysis and selection procedure has already been completed.

The advantages of flexibility are outweighed by the ability of the Datacube board set to map

almost directly to the selected algorithms.

2.4.3 ITI Board Set

Because the ITI board set does not support a high-resolution display format, it has been

eliminated from further consideration.
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3.0 CLASSIFICATION PROCESSOR

An evaluation of the classification processors, considered for implementing the algorithms

shown in the lower half of Figure 1, Minefield Detection System, is discussed here. The classi-

fication processor accepts pixels from the data compression processor and selects those pixels

belonging to minefields. The classification processor performs high-level computations that

are qualitatively different from the image computations performed in the data compression

algorithm shown in the upper half of Figure 1, above the classification block. Consequently,

a more flexible, general purpose architecture is required. The following sections describe the

classification algorithm and processing load, the candidate classification architectures and

processors, and the processor evaluation results.

31 Classification Algorithm Analysis

This section describes the Environmental Research Institute of Michigan's (ERIM) under-

standing of the classification algorithm hnd determines the processing power required for its

real-time execution. The analysis is based on an examination of the source code supplied to

ERIM by WES.

The classification algorithm consists of a clustering algorithm followed by a linearity

and density screening (LDS) algorithm. Pixels emerging from these algorithms are tagged

with a value corresponding to the likelihood that they belong to a mine in a minefield. The

(x, y) position of the pixel and its tag are used to highlight the potential minefields in one

of the original infrared (IR) images of the terrain. Operator feedback on the accuracy of the

highlighted objects can then be used to refine algorithm parameters during a survey flight.

The first of the two classification algorithms, the clustering algorithm, receives pixels

selected Ly the data compression processor that are likely to belong to mines. The pixels are

three radiance values associated with the same (x, y) position; these pixels are the thermal

IR, and the sum and difference of the two polarized NIR images. The clustering algorithm is

based on the principal that the pixels of mines will produce similar trios of radiance values

25



and that clustering of values with similar radiance trios will segregate mine pixels from

background pixels.

To identify clusters, the three radiance values are treated as orthogonal vectors in a three-

dimensional space and thus specify a single point in space (denoted IR 3 ). Clusters are simply

groups of all pixel location trios within a specified distance of one another as determined by

a scaled distance formula. The scaled distance-a variation of the conventional square-root

sum-of-squares distance-is defined in Section 3.1.1. Clusters are represented as the mean

location of all the points in the cluster. The clustering algorithm analysis is described in

detail in Section 3.1.1.

A new input point is compared to all other clusters by calculating the point's scaled

distance to all existing clusters and sorting these distances to find the closest cluster. If

the scaled distance to the closest cluster is within defined limits, the algorithm merges the

point into the cluster. This causes the cluster position, which is the average of all the points

contained in the cluster, to shift. Therefore, it must be repeatedly compared to all other

clusters and merged as long as the new position is less than a threshold distance from another

cluster. The merge occurs once for 99% of all clusters containing a single point. If the single

point cluster is not close enough to another cluster, then it remains a cluster with one point

until another cluster is close enough to be merged with it. When the algorithm merges a

pixel with a cluster, or merges two clusters, the new mean center is calculated according

to Equation (2) in Section 3.1.1. In either case, the point's cluster is passed to the LDS

algorithm.

The second of the two classification algorithms, the LDS algorithm, examines all the

points from each cluster contained in a single frame of imagery to determine the likelihood

that a cluster corresponds to a minefield. The (x, y) coordinates in the original image of

each of the points contained in a cluster are examined and the points are grouped into

individual objects. Objects are groups of pixels that are screened and received from the data

compression algorithm, are parts of an identical cluster, and are sufficiently close together

in the terrain image to be considered the same terrain object. A linear regression, applied
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to the center of mass of these objects, determines if they are sufficiently linearly spaced. In

addition, the objects' spatial density is obtained by dividing the bounding rectangular area

of the objects in a cluster by the number of objects in a cluster. These two tests provide a

numeric measure of how closely the objects of a given cluster conform to the known pattern

of minefield layout. The LDS algorithm is described in detail in Section 3.1.2.

3.1.1 Clustering Algorithm Analysis

The clustering algorithm is the first of two algorithms that make up the classification al-

gorithm. A detailed description of the clustering algorithm and a determination of the

processing power required is provided here. Several functions included in the source code

supplied to ERIM for evaluation have been dropped from the core algorithm. The core al-

gorithm consists of only the necessary functions of the algorithm. The omitted functions

were found to be either algorithmically unnecessary artifacts of specific implementations or

debugging/prototype features that would not be executed during a real-time demonstration

flight. Figure 7, Core Clustering Algorithm, is an operation flow diagram of the clustering

algorithm. The clustering algorithm transmits output data to the LDS process.

When first initialized, the clustering algorithm will go through a short period of higher

activity during which many clusters are formed and merged. During this active period, the

cluster positions will shift and thus move in IR3 as they are mergcd with each other. This

active period should stabilize with a set of clusters that are representative of the mines and

background in the sensor terrain. Thereafter, pixels would mainly (99%) be added to the

existing clusters. Occasionally, some clusters may be created. We assumed that cluster

creation would stabilize since we expect the terrain to be uniform in vegetation and artifacts

during the minefield search period.

In Figure 7, as each point arrives from the data compression processor, the data is

converted to a cluster representation. Since a pixel can be thought of as a cluster with

a single entry, wc can process points and clusters with the same algorithms. The data

compression processor calculates the new cluster's scaled distance to all existing clusters
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Figure 7. Core Clustering Algorithm



and finds the smallest distance. The 99% probability is assigned to the threshold test of

the minimum scaled distance because this path through the algorithm corresponds to the

expected behaviour of each newly created cluster. After the cluster has been merged, the

second occurence of this test will fail most of the time. This calculation of cluster distance

must be done to account for any movement of the cluster that occurs when two clusters are

merged. No further merging will occur (99% of the time) and the next pixel in the frame

will be considered. Since each new pixel will be merged once (99% of the time), the scaled

distance equation must be computed twice for each pixel in the frame.

The last two blocks of the real-time clustering algorithm in Figure 7 reduces the mass

(number of points) in the clusters. The clustering algorithm executes for an extended period

of time on a continuous stream of data from the IR sensor. If the external thermal conditions

change and the cluster masses are not periodically reduced, the external changes could have

a serious effect on the reliability of the algorithm. For instance, if the sun goes behind a

cloud, the IR radiance values that formerly indicated a mine could shift to those of a benign

background object. Conversely, background objects could appear to be mines.

The clustering algorithm contains several equations that make up the majority of the

processing load. The evaluation of the scaled distance requires the most computation in

the clustering algorithm since it requires many calculations and must be evaluated at least

twice for each new pixel. Throughout the algorithm analysis, the following assumptions are

made:

" Image data pixels (Si,Di,Ti) are 8-bit values.
" A classification frame is 700 x 512 pixels (three sequential IR sensor frames).
" A maximum of 5000 points/frame will be received from the data compression

processor.
" A maximum of 50 clusters will be generated.

" The minimum object (mine) size is 5 data-compressed pixels.
* Pixel data is transferred in a raster-scan order.

" The frame rate is 1.seods = 0.66Hz.

The assumptions above are consistent with the source code supplied to ERIM by WES.
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We have defined several variables in order to describe the clustering algorithm mathe-

matically. S, D, and T represent the sum and difference of the polarized sensor intensities

and the thermal sensor intensity, while ni represents the number of points in the ith cluster.

The analysis of the classification algorithm's processing load assumes that Si, Di, Ti, E Si,

E Di, Zj Ti, and ni are maintained for each cluster to minimize calculation of the scaled

distance. 3i, D, and Tj are the averages and E Si, 2 Di, and E Ti are the sums of all

the pixels in the ith cluster. Equations (1-3) represent a form of the clustering and merging

equations that requires minimal calculation.

The scaled distance is defined as:

/ n 1 \2r j 2 /2 (1) ~~7~ 2c [(ES.Eis) + (,D,+ EDi Y TJ +2Ti

where 'coy' is a constant. WES defines the scaled distance as the square root of Equation (1).

Because the scaled distance is only used for comparison to other scaled distances or to an

empirical constant, the square root is unneccesary. It also increases computation time.

Optimal software coding of the scaled distance equation will require 9 additions, 3 divisions,

and 6 multiplications.

When two clusters are merged, the new cluster averages (Si, 9, TJ) and cluster sums

( 2 Sj, E Dj., 2 Tj) are recalculated from the current cluster values according to:

- E S. -= E D' - ET;
Si __ 3 D'. - I- T! =(2)S.-(ni + nj)' (nj + nj)' T;-(nj + ni)()

where: Es; =Zs3±Zs,,

SDE = D, + Di, (3)
5T;=5TJ+5Tr,

Optimal coding of these equations will require 4 additions and 3 divisions per merge.
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The data acquisition rate allows 1.5 seconds to process 5000 points and 50 clusters.

Consequently, the computational load can be computed as:

2(9A + 6M + 3D) + (4A + 3D) X
1.5 seconds 3 x 50 × 5000 (4)

(3.7A + 2M + 1.5D) MFLOPS -_ 7.2 MFLOPS.

The 7.2 million floating-point operations per second (MFLOPS) rate is used in Section 3.1.3

to determine the total processing load for the classification algorithm.

3.1.2 Linearity and Density Screening (LDS) Algorithm Analysis

The LDS algorithm is the second of two algorithms that make up the classification algorithm.

A detailed description of the LDS algorithm and a determination of the processing power

required is provided here. The LDS algorithm groups pixels of the same cluster into physical

objects based on their spatial (x, y) locations within the original IR images. All the objects

within a cluster are subjected to a linear regression test to determine the linearity of the

objects in the original IR images. The spatial densities of the objects of each cluster are then

calculated. The linearity and density values together provide a quantitative test of whether

a given cluster of objects is a minefield.

Figure 8, Linearity and Density Screening Algorithm, is an operation flow diagram of

the LDS algorithm. The LDS algorithm accumulates a frame of up to 5000 points that were

selected by the data compression processor. It then uses the points' cluster identification (a

value that uniquely identifies the cluster that the point is a member of) and (x,y) image

coordinates to group the points into objects with the same cluster identification and similar

location. The objects in each cluster are then analyzed to determine their linearity with

respect to one another and the density of the cluster. Finally, the LDS algorithm selects

the clusters with acceptable linearity and density values and ranks them according to their

likelihood of being minefields.

The processing load for the LDS algorithm can be determincd in a manner similar to that

of the clustering algorithm. Each section in Figure 8 has a separate processing load that must
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be summed to obtain the total LDS processing load. Conditional execution statements (if-

then-else) are assigned a probability of execution for each path. The probability corresponds

to the maximum computational load value (consistent with the other assumed constraints

of the problem) that was itemized in Section 3.1.1.

The first column builds objects from pixels by first collecting pixels in a horizontal

direction that are within a specified distance from each other. If the cluster identification

changed then the current object boundary has been reached and a new object is started.

When this occurs the object is combined in a similar manner in the vertical direction, using

previously formed objects that have the same cluster identification.

Both the x and y components of point locations, which have the same class, are summed

to obtain the x and y arithmetic means of the object. The means will be used as the center

of mass coordinates of the objects when linearity measures are performed. The minimum

and maximum x are maintained for the object and are used to vertically merge the current

object segment to previous segments with the same class.

A total of 5 additions are required to test if a new point is part of the current object.

Five additions are required to add a point to an object and this occurs with a probability of

0.5. To search vertically requires 90 additions; the probability of a merge is 0.5, assuming 20

previous objects are searched and 10 objects are in the same cluster as the current object.

These assumptions follow from the uniform distribution of the mines and the minimum

mine size of five data compressed points. Merging object sections requires 5 additions at a

probability of 0.25 while starting a new object requires no arithmetic operations and has the

same probability. The total number of additions is:

(5A) + .5(5A) + .5(90A + .5(5A)) = 53.75 additions.

This value is a per point average load based on the given data-dependent execution proba-

bilities.
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The second column calculates linear regression summations for all the objects in each

cluster and also finds the minimum and maximum (x, y) extent of the potential minefield

boundary for each class. The variables x, and yc represent the center of mass coordinates

of objects in the image. The regression summations must be computed for x,, yc, xcyc,

xC, y, and ni, where ni is the number of objects in the ith class. Because the minimum

object size is 5 pixels, a maximum of 5000 = 1000 objects could be in a frame. With optimal

coding, 20 additions, 13 multiplications, and 2 divisions are required per object in the frame

to calculate these summations.

The third column calculates the linear regression coefficients for the ith cluster:

b = xcYc - xc E'Yc and bo = yc - biR,
zx2 -Rczxc

where:

_ X, x and Yc = '-YC
ni ni

The length of the minefield along its long axis-a complex conditional equation that depends

on the orientation of the minefield in the image-is also calculated. Assuming a random

orientation of the minefield implies a 0.5 probability for all the conditional pathways in

calculating the minefield front length. These equations require an average of 13 additions,

7 multiplications, and 4 divisions per cluster.

The total LDS algorithm processing rate is:

5000(53.75A) + 1000(20A + 13M + 2D) + 50(13A + 7M + 4D)
1.5 (5)

(0.29A + 0.01M + O.OD) MFLOPS - 0.3 MFLOPS

for continuous real-time performance. This is a fairly trivial rate compared to the clustering

algorithm, provided that the classification processor does not impose a severe overhead to

perform the necessary operations.

3.1.3 Classification Processing Load

A realistic determination of the processing load for the entire classification algorithm is

provided here. The value is the sum of the arithmetic loads determined in Sections 3.1.1
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and 3.1.2 plus external communication overheads. The processing load value must include

sufficient head room so that unforeseen complexities in the implementation of the algorithms

will not require the selected classification processor to be replaced by one with more pro-

cessing power.

The clustering and LDS algorithms require a minimum numeric processing load of about

7.5MFLOPS consisting of 4.0M additions, 2.OM multiplications, and 1.5M divisions. The

7.5MFLOPS value must realistically be doubled to allow for non-optimal coding and unfore-

seen problems in implementing the algorithms for real-time performance. Doubling the re-

quired load is a rough rule of thumb in accordance with good engineering practice. Therefore,

the required numeric processing rate for the clustering and LDS algorithms, not considering

other overhead sources, increases to 15MFLOPS.

Additional processor time will be required for the overhead instructions of program flow

control, data loading, etc. Numerous instruction traces for vonNeumann processors put these

types of overhead at less than 20 percent of the total instruction stream for this kind of a

numerically intensive algorithm. In addition, these operations are mainly of simple integer

type and execute much faster than the more complex floating-point arithmetic instructions.

Consequently, an additional load of about 3 million instructions per second (MIPS) should

be added to the total processor load.

Communication with the data compression processor is an additional source of processing

load. The communication involves receiving the selected pixels with their (x, y) coordinates

and transmitting back the locations and rankings of individual mines after classification.

The input pixels and locations will likely consist of one 32-bit word containing the three

IR values (Si, Di, Ti) and another 32-bit word containing the associated (x, y) coordinates

(16 bits each). Therefore, the data transfer rate is 40,000 bytes (5000x8) in 1.5 seconds

or about 26, 700 bytes per second. Sending the classification results back for display would

require the transfer of a maximum of 1000 objects, consisting of .5 bytes each (for .r. !. and

rank), in 1.5 seconds. This is about 3,300 bytes per second. The total is :30,000 bytes per

second. Although the communication rate appears small, specific architectures may have
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large I/O overheads. If ten instructions are required per byte moved, then an additional

0.3MIPS should be added into the classification algorithm processing load.

In summary, the classification algorithm will require about 15MFLOPS and 3-4MIPS to

maintain real-time execution plus 0.3MIPS for data compression to classification processor

communication. Any additional overhead that a given processor's architecture imposes on

the algorithm will be discussed in Sections 3.2.1 through 3.2.5.

3.1.4 Fixed-Point Precision Requirements

An estimate of the precision requirements of classification Equations (1-3) is provided here.

The required precision is used to determine the minimal precision (number of bits) that will

provide accurate classification results. The precision required to evaluate Equations (1-3) is

estimated by considering the range of the quantities they contain and the operations with

which they are used.

The following assumptions are used in the analysis:

" The 'coy' is an 8-bit quantity.
" Equation (1) is required to have 8-bit accuracy.
* The maximum number of points in the ith cluster is ni = 255.

Section 3.1.1 states that 3,Di,DTi, i, E S, Di, 1 Ti, and ni are required to compute

the distance and merging equations for each cluster. The number of points (ni) in the ith

cluster requires a minimum of 8 bits (Log 2 255) of precision. F Si, E Di, and E Ti each

have a range from 0 to 2552 (255 points x 255 intensities) and require 16 bits (Log 2 65025) of

precision each. Si, Di, and Ti have the same range as Si, Di, and T (0-255) because they

each contain n pixels and are each divided by n. Thus, their precisions will also be 8 bits.

The precisions of the individual values can be used along with Equations (1-3) to calculate

the maximum precision necessary for the clustering algorithm.

Equation (1) of Section 3.1.1 can be divided into several parts.

(I(nj + ni)) (6)
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requires:

2 [Log 2 ({(255 +255))] 18 bits (7)

of precision to the left of the decimal point for the worst-case values (coy = 1, ni = ni = 255)

and:

2 Log2 ((1 + 1) 14 bits (8)

of precision to the right of the decimal point for the worst-case values (cov = 255, ni = nj=

1). The denominators in the three terms of Equation (1):

, ,(9)
S. + S Dj+EDi) ETI'+ETi)

are about 2n times as large as each numerator because the denominator contains twice the

sum of n values that have the same range as those in the numerator. The required precision

is:

Log2 ((2n) 2 ) = 18 bits (10)

to the right of the decimal point when the worst-case (n = 255) is used.

To compute the precision to the left of the decimal point for these terms, we must

first consider the order that the terms are evaluated. Optimal coding for speed requires

the squaring to occur last so that only one squaring operation is performed for each term.

Previous to squaring, the numerator and denominator are evaluated and their quotient is

formed. The numerator will never be larger than the range of Si, Di, and Tj (255 with a

precision of Log2 255 = 8bits) and the denominator never larger than twice the range of

Si, E Di, and ET (2 x 65025 = 130050 with a precision of Log2 130050 = 17bits).

Division of the numerator by the denominator will place the precision to the right of the

decimal point. Consequently, the minimal precision required to the left of the decimal point

is 17 bits.

Equations (1-10) provide enough information for an estimation of the overall fixed-point

precision requirements of the clustering and merging algorithms. Eighteen bits are necessary

to the left of the decimal point to represent the maximum value of Factor (6). Eighteen
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bits are necessary to the right of the decimal point to retain sufficient accuracy when the

fractional Terms (9) are evaluated. The total requirement is 36 bits.

In conclusion, 32-bit floating-point representation will best support the accuracy and

range of values required for the clustering and merging algorithms. The accuracy required

at each step in the evaluation of Equations (1-3) never exceeds the 24-bit precision of the

mantissa of a 32-bit floating-point value. From a resource point of view, the 36 bits could be

used more efficiently-provide a larger range of the same accuracy using the same precision-

if they were used to represent floating-point variables.

The classification algorithm has been defined and its required precision determined; we

can use this information in the classification hardware performance analysis below.

3.2 Classification Hardware Performance Analysis

Five architectures were considered for the implementation of the classification algorithms.

Two fine-grained, single instruction multiple data (SIMD) architectures were evaluated. The

SIMD architectures are made up of many-1024 in both of these processors-simple paral-

lel PEs, configured with linear (AISI5000) and mesh (DAP500) communication paths. The

analysis for the AISI AISI5000 and the AMT DAP500 architectures are contained in Sec-

tion 3.2.5 and Section 3.2.1, respectively. Three different coarse grained multiple instruction

multiple data (MIMD) architectures were evaluated: one using standard complex instruc-

tion set computer (CISC) microprocessors communicating on a parallel bus interconnection

topology (68020 microprocessor), one using custom CISC microprocessors communicating

on a hypercube interconnection topology (N-Cube 7), and one using reduced instruction set

computer (RISC) processors communicating with a flexible mesh interconnection topology

(T800 Transputer). The analyses for the Force 68020, N-Cube N-Cube 7, and Parsytec TSOO

Transputer are contained in Section 3.2.4, Section 3.2.3, and Section 3.2.2, respectively.
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3.2.1 AMT DAP500

One of the two implementations of an SIMD, mesh connected architecture-AMT's (Ac-

tive Memory Technology) DAP500 (Distributed Array Processor)-is discussed here. The

DAP500 is organized as a 32x32 mesh of single-bit PEs and up to IMbit of local memory

per element (see Figure 9, DAP500 System and Figure 10, DAP500 Processor Element Or-

ganization). The system uses a 10MHz clock rate. Most instructions can be executed at this

rate to provide 1010 Boolean operations per second. These features make the DAP500 well

suited for vector, matrix, and image operations.

The analyses contained in the fixed-point and floating-point sections below use the clas-

sification algorithm MFLOPS rate, which was calculated in Section 3.1, and the fixed-point

and floating-point processing rates of the DAP500, along with some approximations for the

amount of processing power consumed by overhead items, to determine how much head room

the DAP 500 provides. If the head room-defined as the amount of extra processing power

available in the basic system-approaches 100%, then the DAP500 passes the mandatory

criteria for processing power.

3.2.1.1 Fixed-Point Performance Analysis

We can use the fixed-point precision requirements to calculate the amount of time the

DAP500 will require to execute the clustering and LDS algorithms. First the execution

time for processing Equation (1) is calculated using execution times published by AMT for

1024-element vector operations using 32-bit fixed-point representation. The analysis is then

repeated using actual times calculated by AMT for Equation (1), assuming 1024-element

vector operation, using 16-bit fixed-point representation. Results for the total clustering and

LDS algorithm execution time are extrapolated from the execution time of Equation (I) and

normalized for comparison. By comparing these times with the 1.5 second frame time, we

can calculate the head room provided by the DAP500.
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The DAP500 is capable of executing:

* 109-4 '12 c fixed-point additions or subtractions in 12pec or
* 1024 32-bit fixed-point multiplications or divisions in 190pisec.

When using additional bits of precision, we assume a linear increase in time for addition

and subtraction operations and a geometric increase of time for multiplication and division

operations. Consequently, we find that the DAP 500 is capable of executing:

* 1024 36-bit fixed-point additions or subtractions in 13.5psec or

* 1024 36-bit fixed-point multiplications or divisions in 240.47psec.

The time to calculate the clustering and merging equations of 5000 points for 50 clusters

is then:
S2213.5usec 21240.47psec =

50 × 5000 x \ 1024 + 1024 1.31 seconds.

The LDS calculations were estimated to require 0.3MFLOPS; this is 5% of the clustering

and merging processing load. AMT estimates that data I/O consumes about 8% of the

processing power of the DAP500. Therefore, we increase the time by 5% to account for the

LDS calculations:

1.31 seconds + 0.05 x 1.31 = 1.37 seconds

and then increase it by 8%\to account for data I/O:

1.37 seconds + 0.08 x 1.37 = 1.48 seconds.

The 1.48 seconds is very close to the allotted processing time of 1.5 seconds.

In conclusion, 36-bit fixed-point processing will just barely allow the processing to be

done at real-time rates. The head room is:

(1.50 - 1.48) x 100% = 1%

1.48

This pecentage of head room does not approach thc 100% head room that was mandated by

good engineering practice.
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Actual processing times for the scaled-distance equation, shown in Equation (1) and

evaluated at AMT, are used to provide a more realistic value cf the DAP500 head room.

The following additional assumptions were used:

" 16-bit fixed-point format is appropriate for the problem,
" All 1024 calculations would have the same fixed-point representation and would

require identical normalization, and
" No processors would be idle in any given frame.

The measured running time was 735ptsec for 1024 evaluations, which is equivalent to:

50 x 5000,102 x 735pseconds 0.18 seconds1024

for the 250,000 (50 x 5000) evaluations required in the worst-case scenario.

These calculations were performed using 16-bit precision and must be normalized with

respect to the 36-bit fixed-point processing times computed previously. Linear increases

for addition and subtraction and geometric increases for multiplication and division will

be used again. Section 3.1.1 shows that the distance equation consists of 9 additions and

subtractions and 9 multiplications and divisions. The time to compute 250,000 evaluations

of Equation (1) is:

36/ +(16)29
-!(0. 18 ))+ ( (0.18)) = 0.66 seconds.

The total running time for the clustering algorithm requires a consideration of the fol-

lowing. Equation (1) must be computed at least twice per frame. The merging equations

must also be computed once per frame for each of the 5000 points, times each of the 50

clusters. Because Equation (1) requires 9 additions, 3 divisions, and 6 multiplications and

Equation (2) requires 4 additions and 3 divisions, the approxiiation of the running time for

the merging equations is less than 50% of the scaled distance running time:

( 9+36 0.66 ; 0.3 seconds.

The total running time for the evaluations of the clustering equation is:

0.66 + 0.66 + 0.3 = 1.61 seconds.
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The LDS calculations were estimated to require 0.3MFLOPS; this is 5% of the clustering

and mcrging processing load. AMT estnrmate3 that data I/O consumes about 8% of the

processing power of the DAP 500.

Therefore, the time can be increased by 5% to account for the LDS calculations:

1.61 seconds + 0.05 x 1.61 = 1.69 seconds

and then increased by 8% to account for data I/O:

1.69 seconds + 0.08 x 1.69 = 1.83 seconds.

This time is a reasonable estimate of the entire processing time per frame including data

IiO. Comparing 1.83 seconds with the 1.5 seconds available for these calculations shows that

there is no head room available for overhead items that haven't been included in this analysis

or for an increase in the required processing power of the classification algorithm.

There are a few factors that haven't been included in calculating the 1.83 second pro-

cessing time. The classification calculations could be hand coded by an experienced DAP 500

programmer to make use of the full power of the system. The algorithm complexity has

been estimated, so more processing power may be required. There are other overhead items

such as interprocessor communication and synchronization that may also require a signifi-

cant percentage of the total processing power available. The maximum number of clusters

is not related to the processor mesh size (32x32) and may require that a percentage of the

processors are unused for a portion of each iteration.

3.2.1.2 Floating-Point Performance Analysis

The amount of time that the DAP 500 requires to execute the classification and LDS algorithm

equations, when a floating-point representation for variables is used, is estimated here. This

time is compared to the 1.5 second frame time limit for real-time processing to determine if

the required head room is available.
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The DAP500 is capable of executing:

a 1024 32-bit floating-point additions or subtractions in 10511sec; this is 9.75MFLOPS.
* 1024 32-bit floating-point multiplications in 156lisec; this is 6.56MFLOPS.
* 1024 32-bit floating-point divisions in 212,usec; this is 4.83MFLOPS.

If the algorithm exclusively contained multiplications or divisions, the DAP500 would

not be able to provide 7.5MFLOPS for the real-time classification algorithm. Therefore, a

closer examination of the algorithm is necessary.

Referring to Equations (1-3), we see that there are 9 + 9 + 4 = 22 additions, 3 + 3 + 3 = 9

divisions, and 6 + 6 + 0 = 12 multiplications required to calculate the clustering and merging

equations for a single point on one cluster. The time to calculate the clustering and merging

equations of 5000 points for 50 clusters is:

50 x 5000 x 22 102sc +9 p1024 + 2124) 1.53 seconds.

The LDS calculations will also require a relatively small amount of time -ice they were

estimated to require 0.3MFLOPS; this is 5% of the clustering and merging processing load.

Also, AMT estimates that data I/O consumes about 8% of the processing power of the

DAP 500.

Therefore, the time can be increased by 5% to account for the LDS calculations:

1.53 seconds + 0.05 x 1.53 = 1.61 seconds

and then increased by 8% to account for data I/O:

1.61 seconds + 0.08 x 1.61 = 1.74seconds.

This time is a reasonable estimate of the entire processing time per frame including data

I/o.

Comparing this time with the 1.5 seconds available for these calculations shows that there

is no head room available for overhead items that haven't been included in this analysis or

for an increase in the required processing power of the classification algorithm.
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As in section 3.2.1.1, there are a few factors that haven't been considered. The classi-

fication calculations could be hand coded by an experienced DAP500 programmer to make

use of the full power of the system. The algorithm complexity has been estimated, so more

processing power may be required. There are other overhead items such as interprocessor

communication and synchronization that may also require a significant percentage of the

total processing power available. The maximum number of clusters is not related to the

processor mesh size (32x32) and may require that a percentage of the processors are unused

for a portion of each iteration.

Based on these head room values and those of the fixed-point performance analysis,

another processor should be considered for implementing the classification algorithm.

3.2.2 Parsytec T800 Transputer

An evaluation of a RISC processor communicating by means of a flexible mesh interconnec-

tion topology is discuqsed here. A multiple transputer system from Parsytec GmbH can be

configured to perform all the processing functions necessary in the classification processor.

Figure 11, Transputer-based Classification System, illustrates the syster level interconnec-

tion that would be used to complete the two separate algorithms. The tree structure on the

left implements the clustering algorithm, while the two processors on the right alternately

perform the LDS algorithm on a frame-by-frame basis. When processing at real-time rates,

pixel data enters the clustering tree and classified pixels flow out to the LDS processors. A

full frame of pixels are accumulated alternately by each processor.

Since the clustering algorithm requires a high processing rate to maintain real-time

execution rates, it must be shared by several Transputers. The binary tree structure chosen

facilitates the required search for the smallest scaled distance within the clustering algorithm.

This structure also minimizes the time required to broadcast the value of a merged cluster

or a new pixel entering the algorithm during the algorithm's iterative step.
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The LDS algorithm requires a small processor lc:.d that could be provided by a single

transputer. Two transputers are used because LDS processing changes character from pixel-

by-pixel to frame-by-frame. A smooth transition from one type of processing to the other is

provided by having one transputer process a frame of pixel data while the other completes

the calculations 'hat require a complete frame-up to 5000 pixels-of data to accumulate

before processing can proceed. The results are then passed along to the data compression

processor for display.

Central control of the multi-processor is executed by the first processor in the clustering

tree. The processor communicates with the data compression processor over the industry

standard VME bus. The primary messages passed are the initially selected pixels output by

the data compression processor and the final mine locations passed back from the classifica-

tion processor.

3.2.2.1 T800 Processor Capabilities

The transputer nodes shown in Figure 11 consist of 1 MByte of local memory, a T800 trans-

puter that includes four standard transputer links for communication, 4kBytes (4 x 210 Bytes)

of fast RAM, and an Institute of Electrical and Electronics Engineers (IEEE) floating-point

processor. Figure 12, T800 Transputer Chip Organization, illustrates the internal architec-

ture of the T800 processor module and the internal resource interconnections. The integer

and floating-point units can maintain a throughput of 7MIPS and 2MFLOPS-using 32-bit

representation-respectively, when data resides in the on-chip memory. In addition, the

T800 control logic allows floating-point, integer, and communications operations to be over-

lapped; the T800 is limited by access to the internal memory and interdependencies between

instruction operands.

The transputer links are a primary attraction of these processors as they provide a low

overhead communication channel between programs running on two different processors.

The transputer system program is initially loaded over the links on power-up from a non-

volatile memory on the VIVIE bus. During real-time execution, all data I/O occurs over the
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links. The eight byte messages required for the classification algorithm can be transmitted

at 10 psec per message.

3.2.2.2 T800 Classification Performance

The T800 processor discussion shows that a network of transputers have sufficient power

to execute the classification algorithms. Whether the algorithm should be implemented in

floating-point or fixed-point is a significant question. A floating-point algorithm is much

simpler to code and debug because fixed-point range overflows cannot occur. However,

floating-point operations are generally more complex and on some machines much slower

than their fixed-point counterparts.

For single precision IEEE floating-point, the T800 can execute single additions, multipli-

cations, and divisions in 0.35 jsec, 0.55 /sec, and 0.85 psec, respectively.

Based on the ratios of operations contained in the clustering and merging Equations (4-

5), an aggregate rate of:

8(0.35) + 4(0.55) + 3(0.85)
15= 0.503p sec or 2.0 MFLOPS15

is required, assuming 32-bit representation.

Using 32-bit fixed-point, the transputer can perform single additions, multiplications,

and divisions in 0.05lisec, 1.95psec, and 2.0psec respectively. These times correspond to

a throughput rate of 1.06MIPS for the given instruction mix or about half as fast as the

floating-point version. The floating-point unit is faster than the integer unit on the T800

because it was designed several years after the integer unit and uses newer technology.

In addition to the arithmetic operations; several communication operations occur during

the calculations for each input point of the clustering algorithm. Input pixels are broadcast

to all the processors for calculation of the scaled distance. Then each processor finds the

minimum distance and sends it toward the root of the tree where the root node checks the

distance against a threshold. Either a merge command is sent back or the pixel remains
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a discrete cluster. In all, a worst-case value of about 100 bytes must be shipped around

the multiple processors at 1.25/psec per byte, or 125!ssec per input pixel. Much of the data

transfer time is overlapped with the arithmetic processing, but a 20% reserve capacity in

the clustering algorithm will be required to ensure that real-time processing rates can be

maintained when communication overhead is included.

The preceding throughput calculations show that nine T800s are required for the clus-

tering algorithm (9 x 2.0 MFLOPS > 1.2(14.4) MFLOPS) and the required 20% reserve for

internal communication. As already stated, two additional T800s would be used for the LDS.

The Parsytec transputers are most economically purchased in multiples of two, so a total of

twelve T800s would be used, with ten assigned to the clustering algorithm. In addition, cen-

tral control would be accomplished by interfacing the twelfth T800 transputer with the VME

bus. The system described would have more than the desired 100% performance margin and

would be economically priced due to the inherent simplicity of transputer-based computers.

3.2.3 N-Cube N-Cube7

An evaluation of a group of CISC microprocessors communicating on a hypercube inter-

connection topology is discussed here. The N-Cube7, from N-Cube Systems, is a MIMD

processor organized as a hypercube connection of several 0.5MFLOPS CISC node proces-

sors, each with 128kBytes of local memory (see Figure 13, Complete N-CubelO System, and

Figure 14, N-Cube Processor Chip Organization). Each node has direct connections to N

nodes where N represents the dimension of the N-Cube and can communicate to every node

in the hypercube by using neighboring nodes as switching networks. Any two nodes can

communicate using less than N nodes for communications routing, not counting the source

and destination nodes, in an N-dimensional hypercube.

A five-dimensional, 16-node hypercube can perform the major classification calculations.

The node processors have 0.5MFLOPS capablility, and the clustering algorithm is estimated

to require 7.16MFLOPS.
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Adding the 5% estimated for the LDS means that:

(7.16 + .05(7.16)\ 1_
0.5 -15,

nodes processors are required.

This calculation assumes that data is always available for the processor nodes and that

communication and I/O overhead is zero. The minimal system 64-node N-Cube7 has enough

processing power to handle the distance and merging calculations as well as handle I/O

overhead calculations and provide head room for expansion. The 64-node connection also

allows the clustering algorithm to be conveniently mapped to the hardware without exceeding

the 50 cluster maximum.

3.2.4 Force 68020 CPU Board Set

An evduation of a group of standard CISC microprocessors communicating on a parallel bus

interconnection topology is provided here. In this study, the Force central processing unit

(CPU) boards were considered since they are high performance processors and Force is a

reliable board supplier. In addition, the Force boards contain specific dedicated hardware

that speeds message passing in a multi-processor system. The system would be structured

as shown in Figure 15, 68020-based Classification System. The multiple processors commu-

nicate over a VME bus with each other and the data compression processor.

The multi-processor structuring of the classification algorithm would be similar to that

for the transputers (see Section 3.2.2, Parsytec T800 Transputer), but with the tree structure

implemented logically via message passing over the VME bus rather than by hardwired links.

Each processor could load a program from a central memory or an on-board programmable

read only memory (ROM).

3.2.4.1 Force Board Capabilities

Each processor would have a Motorola 68020/68882 processor with 256kBytes of local mem-

ory running at 20MHz and zero wait-states to provide a processing rate of 2MIPS and
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0.2MFLOPS per processor. Floating-point and integer operations may be overlapped sub-

ject to instruction dependencies. Dedicated message passing hardware allows a message,

whose maximum length is eight bytes, to be broadcast to multiple processors with minimal

latency. Additional resources on the board may be used for debugging (serial ports) or by

real-time control software (timers).

The message passing hardware can broadcast a message to a maximum of 21 different

CPU boards in parallel. A hardware first-in first-out memory (FIFO) allows a maximum of

eight bytes to be sent in less than 20#sec.

3.2.4.2 Force Board Classification Performance

Multiple 68020/68882 CPUs will be required to perform the classification algorithm. The

number of CPUs that would be required for a floating-point and fixed-point implementation

of the classification algorithm is determined here. Given the much slower apparent floating-

point performance of the CPUs (about 10 to 1), serious consideration must be given to a

fixed-point implementation.

For single precision floating-point, the CPU can perform single additions, multiplications,

and divisions in 3.5 /sec, 4.5 Asec, and 6.25 /sec, respectively. For the combination of multi-

plication, division, addition, and subtraction operations in the classification algorithm, the

throughput is 0.23MFLOPS. Alternatively, the CPU has 32-bit fixed-point operation times

of 0.1 lsec, 2.2 jsec, and 3.9 /sec for single additions, multiplications, and divisions. These

times correspond to a throughput rate of 0.7MIPS for fixed-point arithmetic operations. This

rate should be reduced by 30% or more to account for the additional range checking that

must be performed in a fixed-point implementation. Therefore, for the mix of operations

expected from the classification algorithm, the integer implementation would be about twice

as fast as the floating-point implementation.

Communication among processors is flexible because the Force CPUs allow data to be

broadcast to many processors in one communication cycle. Only 75 bytes need to be trans-
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mitted in the 68020 implementation. However, the message-passing mechanism of the Force

boards prevents much of the communication from being overlapped with the arithmetic com-

putation. All of these items add up to a 50% overhead to preserve real-time throughput rates

with the Force board set.

Comparing these performance figures to the clustering algorithm processing requirement

of 1.5(14.4)MFLOPS shows that 94 CPUs would be required for a floating-point implemen-

tation of the clustering algorithm alone. In other words, the CPU is not powerful enough to

perform real-time calculations for even one cluster. An integer implementation would require

about 43 CPUs for real-time execution rates. In addition, three extra CPUs would be used

for the LDS and central control of the algorithm.

3.2.5 AISI AISI5000

An evaluation of a massively parallel group of fine-grained SIMD single-bit processors com-

municating by means of linear communication paths is provided here. The AISI is a SIMD

machine organized as a linear array of up to 1024 single-bit processors and 32kbits of lo-

cal memory (see Figure 3, AISI5000 System, and Figure 4, Organization of the AISI5000

Processor Elements). The AISI5000 was designed with a very large scale integration (VLSI)

gate array-about 2000 gates. All of the AISI5000 processors operate in lockstep at a 7MHz

clock rate. The organization of the AISI5000 processor allows it to be used not only for the

image operations it was primarily designed for, but also for general purpose processing of

vectors, matrices, and non-standard problems such as neural nets. Additional details of the

AISI5000 processor can be found in Sections 2.2.1 and 2.4.2.

The AISI5000 is capable of:

* 1024 32-bit integer additions in 3.85)usec,
* 1024 32-bit integer multiplications in 318.75psec, and
* 1024 32-bit integer divisions in 318.75tisec.

According to AISI, these times could be accurately extrapolated from tile 8-bit addition
and multiplication times by assuming a linear increase from 8 to 32 bits for addition and a
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geometric increase for multiplication. The time for division is assumed to be the same as for

multiplication. This rough approximation becomes more accurate when more calculations

are performed, as for vector operations, because the additional time for division is hidden in

the time for overhead calculations.

Using the same line of reasoning as in Section 3.2.1, the time to calculate the clustering

and merging equations with the AISI5000 for 5000 points and 50 clusters is:

50 X 5000 X ( 2 2 15.41psec + 9 319psec 12319psec =1.72seconds,
1024 1024 1024 )

if 36-bit precision is used. The LDS calculations will also require a relatively small amount

of time since they were estimated to require 0.3MFLOPS; this is 5% of the clustering and

merging processing load. Also, AISI estimates that data I/O consumes about 5% of the

processing power of the AISI5000. Therefore, we could increase the time by 5% to allow for

the LDS calculations:

1.72 seconds + 0.05 x 1.72 = 1.81 seconds

and then increase it by 5% to account for data I/O:

1.81 seconds + 0.05 x 1.81 = 1.90 seconds.

This is a reasonable estimate of the entire processing time per frame including data I/O.

The AISI5000 cannot perform the classification operations at the required real-time rate

and should not be considered for real-time execution of the REMIDS classification algorithms.

3.3 Classification Processor Acceptance Criteria

The first step of the evaluation process, explained in Section 1.2, is applied here for the clas-

sification hardware. The classification processor architecture recommended by this report

should be the one most likely to produce a real-time demonstration within the limited de-

velopment period available. The architecture may not be the highest performance processor

nor the most suitable architecture since these attributes may make the processor difficult to
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program, purchase or interface. This section will define a set of criteria that allows objective

comparison of different architectures and consistent rating of subjective features such as ease

of programming.

The selected criteria are split into mandatory and desirable gr'ups.

MANDATORY

" Bus system compatible with the data compression hardware,
" Established product,
" Adequate processing power, and
" Below size, weight, power and cost thresholds.

DESIRED

" Development support for parallelism (10)
" Head room (%) of basic system (9)
" Architecture I/O overhead (7)
" Expandability (7)
" Units in field (5)
* Field support (4)
" Cost (2)
" Size, weight, power (2)

In the desirable list, the development support for parallelism is considered to be the

most important and is given a weight of 10. Many processors working together can perform

a task in real-time if enough of them are used; the difficulty arises in programming them to

work efficiently in parallel. Some development environments support parallelism well, while

others simply provide the parallel capablility and leave management to the programmer. The

programmer may also have difficulty utilizing the hardware to full capacity if the development

system is inadequate.

Head room, defined as the percentage of spare processing power available in a baseline

system, is given the next highest importance. Although additional processing power can be

added in some cases by providing additional processors, this is not intended to be considered

part of the head room value.

Expandability and architecture overhead were next in order of importance. Easy ex-

pandability may be critical if the classification algorithm requires more processing power
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than has been estimated in this report. Small increments are more desirable for economic

reasons, but reducing the additional programming effort, required when expanding the pro-

cessor size, should have a higher priority. Architecture overhead refers to the processing

power required for operations that do not contribute to the processing of algorithm data,

such as I/O management, processor synchronization, etc. Architecture overhead also includes

processing power that is wasted when part of the hardware is unused because the hardware

is ngt perfectly fitted to the algorithm. For instance, during synchronization of multiple

parallel processors, some processors will idle-contributipg nothing to performance-while

waiting for other processors to complete their operations.

Next in importance were the number of units in the field and the available field support.

The number of units in the field is used to estimate the maturity of the product. Normally,

initial products are prone to difficulties that a more mature product would have previously

eliminated. In the event of a problem with purchased hardware, the field support provided

will determine how much time is lost before work can resume. While some companies provide

spare boards for the user to stock on location or provide 24 hour replacement service, others

may require that the failing board be shipped out for repair.

The final items were the size, weight, power consumption and cost. Within the maximum

design constraints, these criteria were used to decide between two closely matched processors.

3.4 Classification Processor Analysis Results

Determining whether a processor possesses adequate processing power is a difficult criteria

to evaluate. Besides raw peak processing rate (for example, the number of floating-point or

fixed-point operations that can be processed per second), overhead such as I/O, processor

synchronization and contention, etc., must also be considered in establishing accurate esti-

mates of net throughput. Optimization techniques that could be applied in both hardware

and software can provide significant performance gains, but they are difficult to predict.
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Each of the potential classification processor architectures are evaluated using the crite-

ria defined in Section 3.3. Table 4, Decision Analysis Worksheet (DAP500/N-Cube); Table 5,

Decision Analysis Worksheet (Parsytec/Force); and Table 6, Decision Analysis Worksheet

(AISI5000), summarize the results of this evaluation for all of the previously described classi-

fication architectures. The following sections discuss the evaluation of each of the processors

and derive the results presented in Tables 4-6.

3.4.1 AMT DAP 500

The second step of the evaluation process, explained in Section 1.2. is applied here to the

DAP500. The DAP500 met all the mandatory criteria. A VME card cage, which is available

for this system, facilitates communication to the data compression processor. Size, weight,

power and cost for the DAP500 are all acceptable. The product has been established iz

being readily available as well as being favored by the sponsor.

An analysis of the algorithm and its implementation on the DAP500 showed the fol-

lowing. When using fixed-point arithmetic, the DAP500 just barely performed the required

operations in 1.5 seconds. The overhead, when using fixed-point arithmetic, was only 1%;

this is drasticaily below the required value of 100% overhead. When using floating-point

arithmetic, the DAP500 took 1.74 seconds to perform the required operations; this is 16%

longer than required and provides -16% head room. Because the 24-bit mantissa is smaller

than a 36-bit fixed-point value, a shorter execution time might be expected. The difference

is due primarily to the resynchronization overhead, incurred once for each floating-point

normalization for any of the 1024 processors. Section 3.1.4 showed that 36-bit fixed-point

calculations or 32-bit floating-point calculations are required for the classification equations.

Because the DAP500 cannot perform either of these calculations at the required rate, the

DAP500 should be removed from the list of systems being considered for the real-time im-

plementation of the classification algorithms.

61



C3

z

E0

r-z

o CC00
R - IL
0Z

M
0 Q cr

4 00 __L

o> ~ -------- 

,

1.1 - l 1

0. Z 17c cwc

0 U0
>

U.

0 cc

00

00

00

> >

o C LU

w * 
w

~. 0

LU .-

0 CL MZ

u



olO CC C\ 04 CO '4 a

'Io 0 - ~o 04~ r, r- cr co
-(G0 - --7 U)

0
C4I

0

w 0

LL L 'O 0)IJ C--- - -- - -

%-.~

*z 0l0%l1'

(1) E

0~o

0) 0

L() U)

.0 0 .9

U) + C C

0 D

.) 0 L' -

0 0.C
CL. Cu w

W U 3 - mco .

ca 00

'C a. .

(U 0

*c N
U) Du iz U)



0

z
0

0 0
IL

z

0 D

U) 0I 
)Co- 

-

It0

00
U.

0i 
E

Cl)a 
..2 -

-UU

0.0

00

.A 
3.J 

CL .UL

00

0

l) 00 .0 -9 ~
:02.>

F' l :1; J-
L 2-



The weighted criteria for the DAP were given the following scores. There are currently

25-30 third generation DAPs in the field. Over the past eight years, 20 first- and second-

generation machines have been delivered. Compared with the other systems, this number of

units in the field is small and therefore a score of 6 is given. Field support is rated at 10 out

of a possible 10 points, because spares could be made available for immediate replacement

for a price that is reasonable when compared to the cost of the total system.

The score for the cost of the system is 4 because more powerful systems can be purchased

for a significantly lower cost. The size, weight and power consumption are relatively small;

therefore, the DAP 500 is given a high score of 8.

A score of 0 is given for the expandability criteria. Currently no modularity is designed

into the DAP 500 processor. More processing power can be provided only by duplicating the

system. AMT has just begun manufacturing a DAP600 series processor with a 64x64 array.

The cost for a complete system is $340,000 - $350,000. Although the cost is twice the cost

of the DAP500, the system has four times the number of processors and an increased I/O

rate.

A score of 10 is given for the development support for parallelism criteria. A large

library of standard routines is available and has been optimized in assembly code for the

DAP. Fortran Plus allows code to be written that is more readable because the details of

the hardware are transparent to the programmer. Assembly code allows the hardware to be

programmed for optimum use of resources when processing time is critical.

The architecture overhead associated with the DAP500, when compared to the other

systems, is in the middle range. Data I/O overhead is estimated to consume about 8% of

the processing power of the system; the DAP500 received a relatively high score of 7 for this

criteria.

The composite score for the DAP500 is 243. It is ranked in 3rd place, behind the Parsytec

Transputer and the N-Cube Hypercube systems.
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3.4.2 Parsytec T800 Transputer

The ,econd step of the evaluation process, explained in Section 1.2, is applied here to the

Parsytec Transputer. The transputer multi-processor meets all of the required criteria for

performing the real-time REMIDS c.assification algorithm. A VME interface card allows

communication with the rest of the system. The system size, weight and cost are within

acceptable limits. Of the architectures considered, the transputers have a performance-per-

cost ratio that is one of the best. Parsytec is also a well established company with world

markets and has shipped well over 100 transputer boards to customers.

Given the additional programming effort required and the discussions in Sections 3.1.4

and 3.2.2.2 regarding fixed-point versus floating-point, a floating-point implementation of

the algorithm would be preferrable to a fixed-point implementation. The floating-point im-

plementation requires 11 processors and the fixed-point requires four less, but the additional

programming cost could easily exceed the $13,000 hardware savings. In addition, the im-

plementation risk expands greatly since the fixed-point implementation would be much less

robust with respect to input data values and would possibly be less precise.

The composite score for the Parsytec Transputer is 430, which ranks this architecture in

1st place.

3.4.3 N-Cube N-Cube7

The second step of the evaluation process, explained in Section 1.2, is applied here to the

N-Cube Hypercube. The N-Cube met all the mandatory criteria. An N-Cube system with

the minimal configuration of 64 nodes has more than enough processing power for the classi-

fication algorithms. The system is easily upgradable to twice the number of nodes and with

the addition of a card cage may be upgraded to 1024 nodes. The data I/O bandwidth to

and from the classification processor can be met with the serial host interface and is capable

of communication with the data compression hardware if an additional board is bought for

the data compression card cage.
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The desirable criteria scores are as follows. The N-Cube processor is well established,

as is the Hypercube concept, and N-Cube currently has 200 units in the field; this score is

10. The field support score is 8. The N-Cube comes with a 1 year warranty. Field support

consists of exchanging a defective board for a replacement within 24 hours. The cost score

of 4 was based on a $157,500 price. The size, weight and power score of 6 was based on a

10 ft3 , 250 Ib, 1150 watt system. The expandability was determined to be good and rated a

score of 9. Development support was rated very good and scored 10. Architecture overhead

was accepted as low and scored an 8. The head room for a minimal configuration 64-node

system is 300% and ranked a score of 10.

The composite score for the N-Cube Hypercube is 411, which ranks this architecture in

2nd place behind the Parsytec Transputer system.

3.4.4 Force 68020 Board Set

The second step of the evaluation process, explained in Section 1.2, is applied here to

the Force 68020 board set. Based on the performance evaluation in Section 3.2.4, the

68020/68882, using floating-point arithmetic, cannot be seriously considered for a real-time

implementation of the REMIDS classification algorithm. Using fixed-point arithmetic, 46

CPUs could be configured together, but the Force board limit of 21 CPUs in a broadcast

operation would make coordinating the algorithm execution difficult and would increase the

data traffic on the VME bus. In addition, the programming effort to control such a large

multi-processor would be prohibitive.

The composite score for the Force 68020 board set is 248, which ranks the architecture

in 4th place behind the Transputer, Hypercube and DAP systems.

3.4.5 AISI AISI5000

The second step of the evaluation process, explained in Section 1.2, is applied here to the AISI

AISI5000. The AISI5000 met all the mandatory criteria. The VME interface is compatible
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with a large variety of hardware so interfacing to the data compression hardware is not a

problem. AISI is an established company with 40 machines in the field. The size, weight,

power and cost thresholds were all met comfortably.

Because Section 3.2.1.4 showed that 36-bit fixed-point calculations are required for the

classification operations and the AISI5000 is incapable of processing at real-time rates with

this precision, the AISI5000 should be removed from the list of systems being considered for

the real-time implementation of the classification algorithms.

Although the MIISI5000 is expandable in increments of 128 PEs, the full 1024 PE system is

used as the baseline. No additional increments are possible with the exception of duplication

and next generation hardware.

The development support for parallelism is poor. Although the system does handle par-

allelism well and has an extensive number of commands and library routines for vectors, the

system works primarily on image data. The 8-bit image data commands are not appropriate

for the floating-point computations that must be performed.

The architecture overhead for data I/O is about 5%; this is a middle range score compared

with the other architectures considered.

The composite score for the AISI5000 is 145, which ranks the architecture in 5th place.
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4.0 PROPOSED HARDWARE CONFIGURATION

An overall system configuration for the REMIDS II Airborne processor is depicted in Fig-

ure 16, REMIDS II Airborne Processor. At a high level, the two major processor components,

data compression and classification, are arranged in a configuration with a separate Host CPU

acting as a common system controller for each bus. This allows each processor to operate

independently with its bus and to link with the host when data exchanges are required.

With their heavier processing loads, the data compression and classification processor buses

are never directly coupled, thus substantially avoiding the inevitable contention delays. The

proposed data compression hardware consists of programmable pipeline modules produced

by Datacube. The proposed classification hardware consists of several T800 Transputers

that have been incorporated with additional memory into processing nodes by Parsytec.

4.1 Operational Sequencing

The operational sequencing of the airborne processor is summarized below. The inherent

parallel operations are described in a sequential manner for clarity.

" The host CPU initializes data compression and classification processors and other
components of the system.

" The scanner provides the next line of the 3-channel image data that is formatted
by the scanner interface.

" The data compression processor adds a new scan line to its input frame buffer.
If the full frame is assembled, processing begins for this frame. After frame
processing is complete, candidate target coordinates and pixel values are trans-
ferred to the host CPU where they are placed into shared RAM for access by the
classification processor (see Figure 17, Execution Sequence Through the Data
Compression Processor).

" The classification processor accepts candidate target information from the host
RAM and performs clustering and LDS algorithms. Pixel locations where mines
are detected are compiled and transferred to shared host RAM for access by the
data compression processor.

" Detected mine locations are accepted by the data compression processor. They
are then used to assemble an image that is superimposed upon the original
source image from which the detected mines were derived. The source images
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are buffered within the data compression processor and are aligned with the
detected mine masks based upon the overall processing latency through the image
processing chain.

The scanner image with designated mines is converted to a red, green, blue (RGB)
format and displayed on the high-resolution monitor with suitable along-track
compression. The uncompressed video frame is recorded on the video cassette
recorder (VCR) and accepted by the telemetry unit for transmission to the ground
observation station.

4.2 Open Issues

Further development is required in several areas of the operational system design.

The following issues remain unresolved:

" Operator interaction during data collection and airborne processing.

" Recovery from data-dependent errors that occur within the classification proces-
sor, such as:

" Too many clusters, and

" Too low a threshold.

" Deletion of old data from classification clusters.

" Detailed bandwidth analysis.

" Telemetry and recorder interface overhead effects.
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